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Introduction 

     Deep convolutional neural networks have been widely adopted in various applications. 

Applications on medical researches attracted attention and demonstrated remarkable progress. 

In this task, we applied convolutional neural networks to fulfill the requirements. Further-

more, we experimented a variety of models and mechanisms. 

Data Preprocessing 

     We extracted data with the eight classes {Atelectasis, Cardiomegaly, Effusion, Infiltration, 

Mass, Nodule, Pneumonia, Pneumothorax} out from the whole dataset. We applied data 

augmentation on the training data, through the use of image processing techniques including 

horizontal flipping, shifting the image, rotating the image and center cropping. Furthermore, 

before sending images to the network, we divided the pixel value in the image array by 255. 

Methodology 

 
Figure1. Process flow of this project. 

 

Part 1: Disease Prediction 

We implemented several models for this task: 

(1) Simple CNN networks  

• Network Structure: 4 layers of CNN + 3 layers of fully connected layers. For CNN 

layers, the number of filters are 32, 32, 64, 128, and the kernel sizes are (2, 2), (2, 2), 

(4, 4), (8, 8) respectively. The activation functions are mostly ‘relu’, only ‘sigmoid’ 

for the last dense layer. We applied binary cross entropy loss along with adam opti-

mizer. 

Hyperparameters: batch_size=100, epochs = 20, learning rate = 1e-3, loss = binary 

cross entropy 

(2) DenseNet121 



 

 
Image is modified from Ref [1]. 

• Training: Here we used DenseNet without pre-trained weights. The input pictures 

were tiled to 3 channel, resized to 224 and normalized with mean [0.485, 0.456, 

0.406], standard deviation [0.229, 0.224, 0.225] on three channels. The network was 

trained end-to-end using Adam with standard parameters (β1 = 0.9 and β2 = 0.999) 

starting from 0.0002 learning rate. Loss function is binary cross entropy. After 5 

epochs, the model would achieve the highest AUC score on validation set. 

(3) Resnet50 

• Training: With pre-trained ImageNet weights, we applied a two-stage training pro-

cedure. Starting with the model pre-trained on ImageNet (with include_top = False), a 

Global Averaging Layer, a Dense layer, and a Sigmoid activation are appended to the 

model. Then, with every layer but the last Dense layer locked, the model is trained 

with RMSProp(lr = 1e-3) for 30 epochs. Apply fine tuning based on the previous 

model consists of unfreezing more layers (101, 131, 153 out of 174 layers) and train-

ing with SGD(1e-4) for 50 epochs. 

(4) InceptionV3 

Model structure is described in Ref [2].  

• Training: With pre-trained ImageNet weights, we applied a two-stage training pro-

cedure. Starting with the model pre-trained on ImageNet (with include_top = False), a 

Global Averaging Layer, a Dense layer, and a Sigmoid activation are appended to the 

model. Then, with every layer but the last Dense layer locked, the model is trained 

with RMSProp(lr = 1e-3) for 30 epochs. Apply fine tuning based on the previous 

model consists of unfreezing more layers (165, 197, 249 out of 311 layers) and train-

ing with SGD(1e-4) for 50 epochs. 

(5) Ensemble predictions 

 

Figure 2. Ensemble Work flow 

With the predictions of multiple models, one can perform averaging on the probabili-

ties of every disease predicted by each model. Then by applying the function 
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roc_curve, we can obtain the true positive rates and false positive rates of the ensem-

bled-probabilities. By maximizing Youden's index, we can then decide an optimal 

threshold of each disease. The threshold is applied to the raw predictions output to in-

dicate whether or not the disease is present. Lastly, we have our best model (Dense-

Net121-Pytorch) to produce the heat map of the diseases according to the thresholded 

predictions. 

 

Part 2: Heat Map 

We applied class-activation maps (CAM, grad-CAM) on models to assist predicting 

the bounding boxes. 

a) CAM ( Class Activation Map ) (Image and paper are in Ref [3].) 

Following the method proposed by Zhou et al. (Learning Deep Features for 

Discriminative Localization), localization can be easily achieved with the 

global average layer and the dense layer in the very last part of the model if 

they exist. By performing a linear combination on the maps before entering 

GAP, heat-maps are obtained and localization predictions are made according 

to it. 

 
Figure 3. Class Activation Mapping 

b) Grad-CAM (Gradient-weighted Class Activation Mapping) (Image and paper 

are in Ref [4].) 

This approach uses the gradients of the target disease, flowing into the final 

convolutional layer to produce a coarse localization map highlighting the criti-

cal regions in the image for predicting the disease. Unlike CAM, Grad-CAM 

requires no re-training and is broadly applicable to any CNN-based architec-

ture. In our application, by using grad-CAM, we don’t have to modify our pre-

model like adding Global average pooling layer. 

https://arxiv.org/pdf/1512.04150.pdf
https://arxiv.org/pdf/1610.02391.pdf


 

 
Figure 4. Gradient-weighted Class Activation Mapping 

Part 3: Bounding Box 

 
Figure 5. Bounding Box decision work flow 

     After calculating the heat map, we select global peak value, scaled by a factor of 

0.9, as the threshold to select local maximum points with intensity high enough. We 

apply a maximum filter and a minimum filter to each heat map, and calculate the dif-

ference between resulting heat maps to get probable regions with local maximal cen-

troids. Then, for all the local maxima greater than the threshold in the image, we ap-

plied dilation on them to accumulate multiple candidate points, and choose the  cen-

troid of the accumulated components as the center of a predicted bounding box.  

We utilized fixed size bounding box for each disease, since we have observed that 

same disease tends to have similar box size. For each image with certain  prediction 

and its corresponding heat map, we first construct a box covering every local maximal 

centroid whose boundaries are not lower than a given threshold. The box size is then 

calculated as the average of all these boxes, for each distinct disease. Thresholds for 

each class is initially set as 0.9, and decreases by 0.05 on  every experiment to get the 

threshold producing boxes with a size resembling ones in the validation set the most. 

And then we applied the mean width and height to each predicted centroid for each 

distinct disease. 

 



 

Experiment 

1) Data augmentation techniques 

a) ResNet50: controlling the percentage of image shifting  

Image Shifting Percentage Mean AUROC score 

0.05 (5% of width and height) 0.809581 

0.15 (15% of width and height) 0.796238 

 

2) Using pre-trained weights (some layers frozen) / train from scratch 

a) ResNet50 : pre-trained weights from ImageNet, total layers = 174 

fine tune top N residual blocks -> mean AUROC score 

N = 2 ( layers[153:] ) 0.733198 

N = 4 ( layers[131:] ) 0.758562 

N = 7 ( layers[101:] ) 0.763800 

N = 11 ( layers[59:] ) 0.767270 

 

b) InceptionV3 : pretrained weights from ImageNet, total layers = 311 

fine tune top N inception blocks -> mean roc_auc score 

N = 2 ( layers[249:] ) 0.743673 

N = 4 ( layers[197:] ) 0.752644 

N = 5 ( layers[165:] ) 0.768054 (18 epochs ) 

 

c) DenseNet121 : 

Both of the following models use weight balance on loss function described in 

Ref [5], without data augmentation. 

 

With ImageNet pre-trained weight 0.8126 

Without pre-train weight 0.7794 

   

3) loss (weight or not) 

|P| and |N| denote the number of positive cases and negative cases of each disease in 

the training set respectively. 

 positive balancing factor negative balancing factor 

https://arxiv.org/pdf/1705.02315.pdf


 

Wang et al. (|P|+|N|)/|P| (|P|+|N|)/|N| 

Pranav Rajpurkar et al. |N|/(|P|+|N|) |P|/(|P|+|N|) 

The above table shows two different ways for weight on the loss function. We there-

fore did some experiments on those settings.  Here we augmented the data to four 

times of the original image counts with random cropping(224) and flipping. 

 DenseNet121 AUC 

weight method of Wang et al. 0.8232 

weight method of Pranav Rajpurkar et al. 0.8239 

without weight 0.8195 

From the above experiments, we found out that the model was still trainable even if 

we did not assign weight on loss. The best score was reached by using weights pro-

posed in ChexNet paper. 

Results  

 
Figure 6. Visualization of some heat maps with its ground-truth label (red) and its prediction 

(blue) selected from each disease class. (From top-left to bottom: Atelectasis, Cardiomegaly, 

Effusion, Infiltration, Mass, Nodule, Pneumonia and Pneumothorax) 



 

 
Figure 7. Visualization of some images with its ground-truth label (red) and its prediction 

(blue) selected from each disease class. 

 
Table 1. Final Disease Prediction AUROC 

 

Local Maxima 0.21780 

Local Maxima + Average Box1 0.25075 

Local Maxima + Average Box2 0.25303 

Table 2. Result of different Bonding Box Algorithms 
1 Add an average box for each prediction. The average coordinate is calculated by the same 

method for the average box size, described in previous section 
2 Revised version to reduce predictions with relatively lower likelihoods 

Conclusion 



 

     We completed the task by predicting the disease using a multi-label classifier. The best 

model, DenseNet121 was used to produce heat map, utilizing the gradients of the last convo-

lution layer. After receiving the heat map, we transformed it to boxes according to local max-

ima detection and thresholding. 
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