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ABSTRACT

Cross-domain image retrieval is a challenging problem due
to the data variations between the real-world images and ad-
vertisement images. In this work, we consider four state-of-
the-art deep learning based model to extract the high-level
features combining with four feature pooling strategies. Dif-
ferent from previous works, we further investigate the possi-
bility of integrating the classical feature descriptors. A dataset
containing half a million images of beauty and care products
(Perfect-500k) is utilized for our experiments. The experi-
mental results prove that our proposed hybrid framework can
improve the mAP@7 between 3% and 10% in contrast with
retrieval methods only utilizing deep features.

Index Terms— cross-domain image retrieval, SIFT, deep
learning, hybrid framework

1. INTRODUCTION

With the rapid growth of online shopping, the beauty and
personal care merchandise are now easily available on e-
commerce websites, e.g., Amazon1 and ebay2. To make users
access products of interest conveniently, text-based search-
ing engines have been well-developed. However, it is hard to
find a specific product without its name. Therefore, an image
content-based retrieval systems, which searches items based
on given product photos, is needed.

In practice, the e-commerce sites tend to demonstrate the
property and appearance of products via appealing photos as
shown in Figure1(a). We can treat them as reference images
with query images shot by user. However, as pictures on sites
have been well manipulated to enhance the quality of visual
presentation on products, there might exist subtle difference
from that of in real looks. As a result, the phenomena leads to
a cross-domain image retrieval problem.

In order to promote impactful research and problem solv-
ing in beauty space, the leading beauty app developer, Perfect

1https://www.amazon.com/
2https://www.ebay.com/

(a)

(b)

Fig. 1. Example of the cross-domain beauty and personal care
product images.The buyer domain images (a) may have dif-
ferent viewpoints, brightness, state and complex backgrounds
while the seller domain images (b) are captured in fixed and
ideal conditions in clean background.

Corp. in collaborating with CyberLink Corp. and Academia
Sinica to provide a large-scale image dataset of over half mil-
lion images of beauty and personal care products, namely the
Perfect-500K dataset [1]. Perfect-500K is vast in scale, rich
and diverse in content in order to collect as many as possible
beauty and personal care items from major e-commerce sites.
Given a real-world image containing one beauty or personal
care item, in this paper, we propose methods to match the real-
world query images of item to the same items in the Perfect-
500K data set. Our proposed hybrid framework leverages fea-
tures generated by deep convolutional neural networks and re-
ranks a short-list of retrieved image by SIFT feature match-
ing.

2. RELATED WORK

With the prevalence of CNN, image retrieval is also embraced
with deep learning. Oquab et al. [2] proposed to use the acti-
vations of the fully connected layers as the global descriptors.



Babenko et al. [3] found that using sum-pooling to combine
deep features on the last convolutional layer can obtain ef-
fective performance, and proposed the sum-pooling convolu-
tional (SPoC) method. Tolias et al. [4] build compact feature
vectors that encode several image regions without the need
to feed multiple inputs to the network,in spirit of recent Fast-
RCNN [5] and Faster-RCNN [6] methods but here targeting
particular object retrieval.

In addition to deep learning based method, classical im-
age descriptors serve as promising techniques for object lo-
calization as well. Arandjelovic & Zisserman [7] propose
a localization strategy based on VLAD, where similarity is
computed for multiple image regions, giving a more precise
localization via regression. Zheng et al. [8] present milestones
in modern instance retrieval, review a broad selection of pre-
vious works in different categories, and provide insights on
the connection between SIFT and CNN-based methods.

3. METHODOLOGY

3.1. Classic Feature Extraction

3.1.1. Scale-Invariant Feature Transform (SIFT)

SIFT [9] is a feature detection algorithm in computer vision to
detect and describe local features in images by extracting key-
points and computing the corresponding descriptors. There
are mainly four steps involved in the algorithm. We would
simply explain them one by one.

The first step is scale-space extrema detection. Laplacian
of Gaussian (LoG) is found for the image with various σ val-
ues, which acts as a blob detector and detects blobs in various
sizes due to change in σ. For example, Gaussian kernel with
low σ gives high value for small corner while Gaussian kernel
with high σ fits well for larger corner. Therefore, we can find
the local maximum across the scale and space which gives us
a list of (x, y, σ) values, i.e., there is a potential key-point at
(x, y) at σ scale.

Due to the procedure consumption of LoG, an alternative
is to use Difference of Gaussian (DoG) for the approxima-
tion of LoG. DoG is obtained as the difference of Gaussian
blurring of an image with two different σ, called σ and kσ,
respectively. Once this DoG are found, images are searched
for local extreme values over scale and space. A potential
key-point is defined as a detected local extreme value and is
best represented in that scale.

Once potential key-points locations are derived, they have
to be refined to get more accurate results. In detail, Taylor
series expansion of scale space is used to acquire more accu-
rate location of extreme values. Once the intensity of a spe-
cific extreme value is less than a threshold value, it would be
rejected. Moreover, a 2-by-2 Hessian matrix is applied to re-
move the key-points of edges and eliminates any low-contrast
key-points and edge key-points. The remaining points are rel-
atively strong interest points.

Fig. 2. Architecture of VGG16 [11].

Then, an orientation is assigned to each key-point to
achieve invariance to image rotation. A neighbourhood is
taken around the key-point location depending on the scale,
and the gradient magnitude and direction is calculated in that
region. An orientation histogram with 36 bins covering 360
degrees is created and the highest peak in the histogram is
taken then any peak above 80% of it is also considered to cal-
culate the orientation. It creates key-points with same location
and scale, but different directions. It contributes to stability of
matching.

Now key-point descriptor is created. A 16x16 neighbour-
hood around the key-point is taken. It is divided into 16 sub-
blocks of 4-by-4 size. For each sub-block, 8 bin orientation
histogram is created. So a total of 128 bin values are available.
It is represented as a vector to form key-point descriptor.

After extracting the SIFT descriptors of all images, we
apply the fast library for approximate nearest neighbors
(FLANN) [10] to match the feature descriptors between two
images. Key-points between two images are matched by iden-
tifying their nearest neighbours. But in some cases, the sec-
ond closest-match may be very near to the first. It may hap-
pen due to noise or some other reasons. In that case, ratio
of closest-distance to second-closest distance is taken. If it is
greater than 0.8, they are rejected. It eliminates around 90%
of false matches while discards only 5% correct matches.

For the similarity score, we first consider the number of
matches between two images. Furthermore, we consider the
distances between matched descriptors to avoid tie problems.

3.2. Deep Feature Extraction

In recent years, deep learning has achieved remarkable suc-
cess in various artificial intelligence research areas including
computer vision. Convolutional neural networks have en-
joyed a great success in large-scale image and video recog-
nition and learning efficient dense image representations.
Therefore, in the case of content based image retrieval, we
first extract visual representations from backbone networks
and compare the similarity between the query representation



Fig. 3. Residual block in ResNet [12]

Fig. 4. A block of ResNeXt with cardinality = 32, with
roughly the same complexity. A layer is shown as (# in chan-
nels, filter size, # out channels).

and representations from database. Here we leverage several
powerful CNN-based image classifiers as our backbone net-
works for feature extraction.

3.2.1. VGG16

VGG [13] explores the use of increasing networks depth with
very small (3×3) convolution filters and demonstrates that a
significant improvement on the prior-art configurations can
be achieved by pushing the depth to 16–19 weight layers.
Here we adopt VGG with 16 layers (VGG16) and pre-training
weights optimized using ImageNet dataset [14]. The archi-
tecture overview of VGG16 is shown in Figure 2. To ex-
tract image representation, we transform the features derive
last convolutional layer with 512 channels by several differ-
ent pooling strategies discussed in following sections.

3.2.2. ResNet

He et al. [12] present a residual learning framework to ease
the training of networks that are substantially deeper than
those used previously. ResNet explicitly reformulate the lay-
ers as learning residual functions with reference to the layer

Fig. 5. The schema of the original Residual module (left) and
the SE-ResNet module (right).

inputs, as shown in Figure 3, instead of learning unreferenced
functions. The last convolution layers result in 2048 channels.

3.2.3. ResNeXt

Xie et al. [15] present a simple, highly modularized network
architecture for image classification. The network is con-
structed by repeating a building block that aggregates a set of
transformations with the same topology as shown in Figure 4.
The design results in a homogeneous, multi-branch architec-
ture that has only a few hyper-parameters to set. Moreover,
this strategy exposes a new dimension, named “cardinality”
(the size of the set of transformations), as an essential factor
in addition to the dimensions of depth and width. Similar to
ResNet, the final convolution layers consist of 2048 channels.

3.2.4. SENet

Hu et al. [16] propose a novel architectural unit, which called
“Squeeze-and-Excitation” (SE) block, that adaptively recali-
brates channel-wise feature responses by explicitly modelling
inter-dependencies between channels. The work basically
modifies the residual block into SE block and achieve the
first place in Large Scale Visual Recognition Challenge 2017
(ILSVRC2017) [17]. The design block unit is shown in Fig-
ure 5.

3.3. Deep Feature Pooling

Instead of using feature vectors generated by the last fully
connected layers, recent works derive visual representations
from the activations of the convolutional layers. According
to [18] such representation offers better generalization prop-
erties for test data that are far from the source (training) data.



For pooling layer, our goal is to obtain a image representa-
tion vector f given the activations (3D tensor) of a convo-
lution layer. For further illustration, we formulate the 3D
tensor of w × h × d dimensions into a set of 2D features:
S = {Sn} (n = 1, ..., d), where Sn is the n-th channel fea-
ture of size w × h.

In the following paragraphs, we introduce pooling strate-
gies we used for image feature generations.

3.3.1. MAC

Maximum activations of convolutions (MAC) [2] encodes the
maximum local response of each of the convolutional filters
and is therefore translation invariant. The operation could be
represent as

fMAC = [f1, f2, ..., fn, ..., fd] , fn = max
x∈Sn

x. (1)

3.3.2. SPoC

In [3], Babenko et al. investigate possible ways to aggregate
local deep features to produce compact global descriptors for
image retrieval. The experimental results reveal that the sim-
ple aggregation method based on sum pooling provides ar-
guably the best performance for deep convolutional features.
Thus we take sum-pooled convolutional features into consid-
eration. In practice, we re-formulate the features as average-
pooled features.

fSPoC = [f1, f2, ..., fn, ..., fd] , fn =
1

|Sn|
∑
x∈Sn

x. (2)

3.3.3. R-MAC

Regional maximum activation of convolutions [4] is a quite
popular descriptor, which uses a multi-scale rigid grid with
overlapping and generates a single feature vector per region.
Here, we denote these region-level features as R = Rk(k =
1, . . . ,m) for a number of m regions. The regions R are de-
fined on the space of all valid positions for the considered fea-
ture map (and not on the input image plane). These region-
level features are normalized and sum-aggregated indepen-
dently to obtain the compact vectors as follows:

fR−MAC = [f1, f2, ..., fn, ..., fd] , fn =

m∑
k=1

Rk

norm(R)
.

(3)

3.3.4. RA-MAC

We can find out that R-MAC treats each region equally by
summing operation and is not robust enough to deal with im-
age from different domain (with different kind of background

information). To assign larger weights to the regions con-
taining objects instead of backgrounds, recently research [19]
equips the pooling strategy with attention mechanism on top
of the regions. The formulation of Regional Maximum Acti-
vations of Convolutions (RA-MAC) is shown in below.

Mi,j =

{
1 if Ai,j >

∑w
i

∑h
j Ai,j

w×h ,

0 otherwise
(4)

fRA−MAC = [f1, ..., fn, ..., fd] , fn =

m∑
k=1

∑
(i,j)∈r Mi,j

size(r) Rk

norm(R)
,

(5)
where Ai,j =

∑d
n=1 Sn, (i, j) is a particular position in the

position of w× h and size(r) denotes the size of the region r.

3.4. Retrieval, Localization and re-ranking

3.4.1. Initial retrieval

The deep features, such as MAC, SPoC, R-MAC, RA-MAC
feature vectors, are computed for all databases images. Sim-
ilarly, at query time we process the query image and extract
the corresponding feature vector. During the filtering stage
we directly evaluate the distance between the query and all
the database vectors. Therefore, we obtain the initial ranking
based on the similarity of deep feature vectors. For comput-
ing the similarity (distance D) between two feature vectors, u
and v, we consider three different metrics.

• L1 distance [20]: the sum of the horizontal and vertical
distances between points on a grid and also known as
Manhattan distance.

DL1 = ‖u− v‖ (6)

• L2 (Euclidean) distance [21]: the ”ordinary” straight-
line distance between two points in Euclidean space.

DL2 = ‖u− v‖2 (7)

• Cosine distance [22]:a measure of similarity between
two non-zero vectors of an inner product space that
measures the cosine of the angle between them.

Dcos = 1− u · v
‖u‖2 ‖v‖2

(8)

3.4.2. Re-ranking

So far, a rough localization of the query object is derived from
deep features. We now consider a second re-ranking stage,
as typically performed in spatial verification [23] with local
features. A short-list of N top-ranked images is considered
and similarity measurement is applied on pairs of query and
database images.



Here, we refine and re-rank our retrieval results by captur-
ing fine-grained localization (key-points) with SIFT features
given the top-100 retrieved images from database. The match-
ing method is described in 3.1.1. We expect that the deep fea-
ture methods can help to extract relative coarse information,
and SIFT features would play an important in re-ranking the
results via detailed local information.

4. EXPERIMENTS

4.1. Data

Perfect-500K contains 538,517 product images collected
from several e-commerce websites. To verify the retrieval
performance, another 100 product images from real-world are
provided as the test set. Given a real-world product image, we
are asked to retrieve the same product from the Perfect-500K.

4.2. Performance Metric

For evaluating the performance, we use mean average pre-
cision with top-7 retrieved results (mAP@7) which computes
the average precision (AP) for each individual query, and then
compute the mean among all the queries.

mAP@Q =

∑Q
q=1 AP(q)

Q
(9)

AP(q) =
1

GTP

q∑
i=1

TP seen
i

(10)

where Q is the number of considered retrieved results (i.e., 7
in our experiments). GTP refers to the total number of true
positive samples for the query, and TP seen refers to the num-
ber of true positive samples seen till q. The higher mAP value
indicates the better retrieval performance.

4.3. Evaluation Result

The evaluation results of VGGNet are in Table 1, ResNet in
Table 2, ResNeXt in Table 3, and SENet in Table 4. With-
out the SIFT re-ranking, the best mAP@7 is 0.3329 from the
SENet features with RA-MAC and L2/cosine distance. More-
over, with the SIFT re-ranking, the best mAP@7 is 0.3787
from the SENet features with MAC and cosine distance. We
can see the effectiveness of the SIFT re-ranking which im-
proves all the combination methods between 3% and 10%.

Both the best performance with or without the SIFT re-
ranking are from the SENet features, which implies the fea-
tures from SENet are more powerful than other models. For
the different pooling methods, there is no obvious difference
between MAC, R-MAC, and RA-MAC. However, the results
of SPoC are generally worse than the other three pooling
methods. For the different distance metrics, there is also no
obvious difference between the three metrics.

Table 1. mAP@7 of VGGNet with or without the SIFT re-
ranking.

SIFT MAC R-MAC RA-MAC SPoC

L1
w/o
w/

0.2260
0.2517

0.1917
0.2317

0.2040
0.2600

0.1745
0.2387

L2
w/o
w/

0.2229
0.2737

0.1882
0.2478

0.2187
0.2875

0.1783
0.2208

Cosine
w/o
w/

0.2229
0.2701

0.1882
0.2415

0.2187
0.2878

0.1783
0.2162

Table 2. mAP@7 of ResNet with or without the SIFT re-
ranking.

SIFT MAC R-MAC RA-MAC SPoC

L1
w/o
w/

0.2834
0.3762

0.2624
0.3433

0.2938
0.3700

0.2517
0.2942

L2
w/o
w/

0.2822
0.3545

0.2774
0.3392

0.2961
0.3631

0.2327
0.2573

Cosine
w/o
w/

0.2822
0.3603

0.2774
0.3392

0.2961
0.3685

0.2327
0.2637

Table 3. mAP@7 of ResNeXt with or without the SIFT re-
ranking.

SIFT MAC R-MAC RA-MAC SPoC

L1
w/o
w/

0.3059
0.3675

0.2709
0.3515

0.2827
0.3423

0.2552
0.3128

L2
w/o
w/

0.3046
0.3658

0.2648
0.3550

0.2750
0.3517

0.2210
0.2945

Cosine
w/o
w/

0.3046
0.3725

0.2648
0.3600

0.2750
0.3517

0.2210
0.2942

Table 4. mAP@7 of SENet with or without the SIFT re-
ranking.

SIFT MAC R-MAC RA-MAC SPoC

L1
w/o
w/

0.2786
0.3488

0.2853
0.3301

0.2809
0.3623

0.2629
0.3304

L2
w/o
w/

0.2923
0.3728

0.2964
0.3401

0.3329
0.3653

0.2674
0.3010

Cosine
w/o
w/

0.2923
0.3787

0.2964
0.3406

0.3329
0.3703

0.2674
0.3001

4.4. Visualization

We demonstrate two retrieval results as shown in Tables 5 and
6 using the same backbone network (SENet) and the same
distance measurement (cosine distance), respectively, with or
without the SIFT re-ranking. Both of the results reveal the
effectiveness of SIFT re-ranking method. Moreover, the false



Query Top-1 Top-2 Top-3 Top-4 Top-5 Top-6 Top-7

w/o SIFT re-ranking

MAC

R-MAC

RA-MAC

SPoC

w/ SIFT re-ranking

MAC

R-MAC

RA-MAC

SPoC

Table 5. An example retrieval top-7 results (“v000146.jpg” in the test set) under the SENet features and cosine distance. The
true retrieved ones are highlighted by green squares.

positive samples are quite similar to the query examples, in-
dicating the difficulty of the current task.

5. CONCLUSION

In this paper, we propose a hybrid framework by com-
bining the deep learning features (i.e., VGGNet, ResNet,

ResNeXt, SENet) with different pooling methods (i.e., MAC,
R-MAC, RA-MAC, SPoC) and the classical features (i.e.,
SIFT). The experimental results of the beauty product re-
trieval task demonstrate the effectiveness of our proposed ap-
proach. However, this kind of cross-domain images retrieval
task is still challenging for the real-world applications. In
the future work, we plan to combine more different feature



Query Top-1 Top-2 Top-3 Top-4 Top-5 Top-6 Top-7

w/o SIFT re-ranking

VGGNet

ResNet

ResNeXt

SENet

w/ SIFT re-ranking

VGGNet

ResNet

ResNeXt

SENet

Table 6. An example retrieval top-7 results (“v000105.jpg” in the test set) under MAC pooling method and cosine distance.
The true retrieved ones are highlighted by green squares.

extraction methods like using Optical Character Recognition
(OCR) to recognize the product description or more powerful
features (e.g., Speeded Up Robust Features (SURF)).
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