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Method

1. Visual Concept Extraction: 3. Image Stream Segmentation
* Prune low quality images with blurriness and color diversity detection * Deep Learnt Feature: Compute distance of two vectors.
* Automatically extract concept from image using pre-trained network. * Event Interval: Set a reasonable duration for a specific
Provided concept: ['indoor’, 'man’, 'person’] aCtIVIty' 1. manual set reasonable interval

ImageNet concept: ['patio’, 'torch’, 'bucket’, 'Christmas_stocking', 'lab_coat'] 2. count adjacent “minutes” as

The L2 distance of (1)Autoencoder latent
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Object detection: ['person’, ‘cup’, 'person’] > Mmerge images as event

Google vision api:
label: ['car’, 'man’, 'fun’, 'male’, 'vehicle', 'recreation’, 'vacation’, 'tree']
text detection: ['cafe’, 'the']
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2. Indexing 4. System output

* Metadata Preprocessing
* Retrieval model in NLP: Exact Matching, BM25, Word Embedding

 Daily Activities Summarization: Sum up segmented retrieved
events.

* Life Moment Retrieval: Directly output retrieved images

Experiment Results

1. Performances in ADLT Coffee capturing Embedding Comparison
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fine-tuned query + concept selection (N) 0.3850 contextual information such as
fine-tuned query + concept selection (G) + coffee capturing  0.4592 feature (RGB he_re) could help svhtactic dependencv or lexical
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- ontology provides better
. precise.
2. Performances in LMRT performance.

Run ID  Description F1@10 CO n C I u S | O n S
Runl  automatic query (baseline) 0.177
Run3  automatic query + constraints | 0.223 In both subtasks, we introduce the external textual knowledge
Run4  fine-tuned query + fine-tuned constraints 0.395 (Rank 4) " d th fi bet th d th
Run5  fine-tuned query + fine-tuned constraints + clustering ~ 0.354 O reauce tne semantc gap petween tne user query an e

visual concepts extracted by the latest CV tools. Experimental
results show that filtering out noisy concepts could significantly
* Equal Contribution nttps:/fwwn.engadget.com/2018/02/27/qoogle-clips-ai-camera-review! Improve the performance. Besides, proper human intervention
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Attps:/fwwaw.youtube. comiwatch?v=D3BJSbISVbA for query refinement makes the retrieval more precise.
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