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ABSTRACT

Short video app, like TikTok1, has received wide acclaim
due to the prevalence of social media and the availability of
recording devices such as mobile phones. Moreover, with
the advent of the big data age, the use of historical user be-
haviors from multi-modal resources plays a pivotal role in
the video recommendation system. In the ICME 2019 Short
Video Understanding Challenge, participants are asked to pre-
dict whether a user will finish and like a specific short video
along with its multi-modal features, i.e., the problem is for-
mulated as a click-through rate prediction task. In this paper,
we present an ensemble of unconventional models to the task,
including tailored neural networks structure based on Com-
pressed Interaction Network (CIN) and Gradient Boosting
Decision Trees (GDBTs) using classic SVD-based features.
We achieved a weighted AUC score of 0.8029 and 0.8037 on
the Public and Private Leaderboard2 of track2, respectively,
and ended up with the 3rd place in the competition.

Index Terms— Short Video Recommendation, Deep
Learning, Gradient Boosting Decision Tree

1. INTRODUCTION

Powered by high speed network and affordable recording de-
vices, short video streaming now becomes an engaging and
emerging type of service in social media. People not only en-
joy short videos, but also share a clip of life in a second on the
social media such as TikTok and Instagram3. Large amount of
user-generated content can thus be displayed on a tiny screen.
However, the overload of information would heavily harm the
user experiences.

Several successful social media platforms have shown the
value of feeding relevant information to users. Therefore, to
grab the users’ attention, recommender systems are adopted

1https://www.tiktok.com/
2https://biendata.com/competition/icmechallenge2019/final-leaderboard/
3https://www.instagram.com/

to match user interests with resource items. Conventional rec-
ommendation methods, e.g., matrix factorization [1], mainly
model users preference towards items using historical user-
item interaction records.

Recently, various kinds of auxiliary data become increas-
ingly available. In addition, inspired by the immense success
of deep learning in computer vision [2] and natural language
processing [3, 4], deep learning based methods [5, 6, 7] have
been proposed for CTR (click-through rate) prediction task.
As a result, to describe user portraits and item properties in
more detail, multi-model features extracted using deep learn-
ing models from auxiliary data have a significant impact on
enhancing prediction performance.

Given multi-modal video features, including visual fea-
tures, text features and audio features, as well as user in-
teractive behavior data, such as finish and like, the ICME
2019 Short Video Understanding Challenge cooperating with
ByteDance Inc. asked the ML community to predict the
user’s click behavior (finish or like) on a collected video
dataset, named Byte-Recommend100M. Two sub-tracks with
various scales of datasets are proposed; track1 contains
hundreds of millions of data and track2 is a relatively
small-scale dataset with tens of millions of data. More-
over, a baseline implementation of factorization machine
[8] using 5 features (user id, user city, item id,
author id, item city) is kindly released .4

In this paper, we present our solution to reach the 3rd

place in track2. Based on the fact that the probability of fin-
ish is highly correlated to that of like, we incorporate gradient
boosting decision trees and deep neural networks, which are
trained in a multi-task learning fashion, to make recommen-
dations. Additionally, since feature engineering plays a cru-
cial role in the success of many predictive systems, we further
illustrate the techniques for feature creation. Extensive exper-
imental results demonstrate the road map to achieve 0.8038
on Private Leaderboard.

4https://github.com/challenge-ICME2019-
Bytedance/Bytedance ICME challenge
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2. RELATED WORK

Video recommender systems have triggered researchers’ in-
terests in recent years. Davidson et al. [9] made use of asso-
ciation rule mining [10] and co-visitation counts to compute
the relatedness score of two videos. He et al. [11] develop
techniques based on neural networks to tackle the key prob-
lem in recommendation - collaborative filtering - on the basis
of implicit feedback.

With the help of plentiful meta-data, advanced deep learn-
ing based models are developed to use multi-modal features
without much effort on feature engineering. For example,
Covington et al. [12] proposed a deep candidate generation
model to encode the arbitrary continuous and categorical fea-
tures into dense representations, which is a memory-efficient
way comparing to traditional matrix factorization methods.
Not limited to video recommender system, a variety of click-
through-rate problems could also be solved using deep learn-
ing neural networks. Guo et al. [5] proposed a model,
DeepFM, to combine the power of factorization machines for
recommendation and deep learning for feature learning in a
new neural network architecture. Lian et al. [6] proposed a
novel Compressed Interaction Network (CIN), which aims to
generate feature interactions in an explicit fashion and at the
vector-wise level. Wang et al. [7] proposed the Deep & Cross
Network (DCN) equipped with a novel cross network that is
more efficient in learning certain bounded-degree feature in-
teraction.

In this paper, we introduce a tailored structure of neural
networks to deal with the multi-task learning techniques. The
proposed architecture can furnish a complementary prediction
to GBDTs and boost the performance by ensembles.

3. APPROACH

3.1. Data description

Byte-Recommdend100M dataset, provided by ByteDance
Inc., consists of tens of thousands of different users and
100 Millions of different videos. More specifically, in
track2, 19,622,340 samples are used for training and another
2,761,799 samples for testing. The multi-modal features for
each sample are list below:

• Face features including beauty score, gender and the
position of face displayed in the video

• The video content is modeled by 128-dimensional vi-
sual features.

• The back ground music (BGM) is also represented by
128-dimensional audio features.

• The words of title are first encoded and transformed
into format of bag-of-words representation.

For the interaction data between user and video, the spe-
cific meaning of each field is shown in Table 1. finish and
like are treated as prediction target in this task.

Table 1: Description of interaction data

Field name Field description Data type
uid User id int

user city User’s city int
item id Video id int

author id Author id int
item city Video city int
channel Channl of the video int
finish finish the video or not bool
like like the video or not bool

music id Music id int
did Device id int

creat time Video release time int
video duration Video duration int

3.2. Feature engineering

Here we explain the non-trivial feature sets we use in order to
describe the user portrait or item content comprehensively.

3.2.1. One-hot encoding

To begin with, we encode the categorical feature using a one-
hot (aka one-of-K or dummy) encoding scheme. This op-
eration consumes so much memory that we use compressed
sparse row matrix for storage instead of the dense one. Binary
vectors with 5,212,602 dimensions are then generated.

3.2.2. Latent features

The classical recommendation algorithms is based on the idea
of matrix factorization, which is superior to nearest-neighbor
techniques. To obtain the dense representations for users
and items (videos, musics and authors here), we construct
latent features from the user-item interaction matrix via sin-
gular value decomposition [13]. Given an interaction matrix
A ∈ Rn×m, where n and m denote the number of unique
users and items, respectively, the SVD operation could be ex-
press as the product of three matrices,

A = USV T (1)

where U ∈ Rn×n and V ∈ Rm×m are two orthogonal ma-
trices and represent the latent features for users and items,
respectively; and S ∈ Rn×m is a diagonal matrix with non-
negative entries known as the singular values.

Apart from (uid, item id) interaction pairs, we further
consider (uid, music id) and (uid, author id) to con-
struct the matrix in our solution. The latent features are thus
able to depict the user portraits through various aspects. In
addition, the item could be well represented by latent factors
extracted from V . Moreover, since the original U and V ma-
trices are too large to fit in the memory, low-rank approxima-
tion technique is adopted to reduce the latent dimension for
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feature construction; that is, we would like to build a rank-k
approximation matrix Ak obtained from the truncated singu-
lar value decomposition (selecting the k most significant sin-
gular components),

Ak = UkSkV
T
k , (2)

so that A ≈ Ak. The dimensions of U and V T become n× k
and m×k. The low rank approximation not only reveals hid-
den relationships between users and items (video, music and
author) in an efficient way, but also reduces the risk of over-
fitting since only important information is retained. From a
pragmatical point of view, truncated SVD is fast and the de-
composition result is unique. That is a nice property for re-
producing. Finally, latent features with diverse characteris-
tics are generated using interaction between (uid, item id)
with k = 50, (uid, music id) with k = 10 and (uid,
author id) with k = 10.

Another method to create latent feature is to find the
embedding weights through stochastic gradient descent in a
training scheme similar to tuning neural networks. The model
can be formulated as

ŷui = f(qu · pi + bu + bi) (3)

f(x) =
1

1 + exp(−x)
(4)

where qu and pi are user and item representations, bu and
bi denote the bias term. f(x) is a sigmoid function for bi-
nary prediction. We use Bayesian Personalised Ranking [14]
pairwise loss, which is designed to maximize the prediction
difference between a positive example and a randomly chosen
negative example. It is useful when only positive interactions
are present and the optimization of AUC is desired. We train
the model with 30 epochs using the LightFM [15] implemen-
tation and generate two 10-dimensional latent vectors for user
and item representations.

The aforementioned feature engineering results in a 160-
dimensional (2× (50+10+10+10)) feature vector for each
sample pair by concatenating all of above features.

3.2.3. Dot product

Even though the neural networks algorithm, such as multi-
layer perceptron, can automatically learn an interaction func-
tion for computing relevant score, the experimental results
shown in [11] demonstrate that a simple dot product (or
element-wise product) operation is useful for making robust
predictions. Therefore, we compute the dot product of each
latent vector pair described in the previous section and gen-
erate 4-dimensional feature vector to express the relevance
between user and item.

3.2.4. Statistic-based features

Given a specific categorical feature, the conditional probabil-
ity of another one enriches information about users, items,

and musics. To portray the user preference in an explicit
way, we compute the conditional probability of a particular
attribute given user id. For example, we can derive which
channel the user is prone to watch from P (channel|uid).

Likewise, for a continuous feature, we compute its con-
ditional expectations given a specific uid. Moreover, the
conditional standard deviation benefits the representabil-
ity, too. For example, E(video duration|uid) and
σ(video duration|uid) are adopted to describe the pref-
erence and habit of a user.

For this task, we use P (channel|uid),
P (channel|item id), P (channel|music id),
E(video duration|uid), σ(video duration|uid)
to generate a 5-dimensional feature vector for each sample
pair.

3.2.5. Title representation

Intuitively, the content of title has a noticeable influence on
the click-through-rate. However, since only bag-of-words
feature is provided, it’s challenge to model the title’s context,
i.e., sequential relationship of words. In addition, the huge
vocabulary size with 202,689 unique tokens make it inadvis-
able to represent the title using bag-of-words features. A low-
memory alternative is to implement feature hashing based on
the count-based feature, which finds the token string name to
feature integer index mapping. In our solution, the number
of features is set to be 24 and a 16-dimensional feature vector
for each title representation is then created.

3.3. Deep Learning Based Framework

In this task, two sub-tasks are proposed: predicting the prob-
ability of finish and like. By exploring the distribution
of the two prediction targets, we can find a positive value of
like always followed by a positive value of finish; that
is, modeling their dependency triggers the motivation of de-
signing a multi-task deep learning framework.

The overview of the proposed neural network based
model is illustrated in Figure 1. The sparse features, such as
uid and music id, first flow through an embedding layer
for dense representation encoding. Then we leverage Com-
pressed Interaction Network (CIN) [6] to model high-order
feature interactions explicitly. Since CIN and multi-layer per-
ceptron (MLP) take complementary advantages of each other,
an intuitive way to enhance the model is to integrate these two
structures. Moreover, for the multi-task learning scheme, two
tasks share most of the hidden layers except for the final pre-
diction layer.

As for the model inputs, we transform the sparse data into
multi-field categorical form, which is widely used by deep
neural networks based recommender model. An example is
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Fig. 1: The architecture of tailored neural networks with multi-task learning. Linear projection stands for Linear(x) = xW+b.

shown below:

[0, 1, 0, ..., 0]︸ ︷︷ ︸
Field 1: uid

[0, 1, ..., 0]︸ ︷︷ ︸
Field 2: user city

[1, 0, ..., 0]︸ ︷︷ ︸
Field 3: item id

· · · [0, 0, ..., 1]︸ ︷︷ ︸
Field i: did

For dense inputs, such as video duration and
audio feature, we first concatenate them and use fully
connected layers to learn high-level feature representation.

After we convert all features into dense representations,
both CIN and MLP are applied for learning. Moreover, a
fully connected layer is used to learn dense input solo. Fi-
nally, three logits output from CIN, MLP, and dense inputs
projection, are summed up together and the sigmoid function
is responsible for the final output probability.

3.4. Gradient boosting decision tree

Although most winning models in data science competitions
are ensembles of some advanced machine learning and deep
learning algorithms, one particular model that is usually a part
of such ensembles is the Gradient Boosting Decision Tree
[16], which has quite a few effective implementations such as
XGBoost and pGBRT. In this paper, we use LightGBM [17],
a highly efficient gradient boosting decision tree implemen-
tation by Microsoft Research. The reason lies in that Light-
GBM accelerates the training process through Gradient-based
One-Side Sampling (GOSS) and Exclusive Feature Bundling
(EFB), and can achieve almost the same accuracy with far less
time consuming, which is an important concern when dealing
with tens of millions of data. The parameter settings would
be discussed in the following sections.

4. EXPERIMENTS

4.1. Model training and parameters

Given the training set, we split 20% of the data for valida-
tion and parameter tuning. We update the neural networks
based model by Adagrad [18] with a mini-batch size of 512
and train for number of epochs from one to three (depend on
the number of features). Learning rate is set to 0.01. The
l2 regularization is set to 0.00001. The setting for number
of neurons per layer is 512 and 256 for both CIN and DNN
layers; 128 for prediction layers. The activation functions in
CIN and MLP are all ReLU [19].The dimension of field em-
bedding is 8. The loss function is binary cross-entropy since
the task is formulated as a binary classification problem.

In addition to NN-based model, two LightGBMs are
trained separately for predicting the probability of finish
and like, respectively. For LightGBM, we use a Scikit-learn
API version of it and fine-tune the two most significant hyper-
parameters, n estimators and num leaves, on valida-
tion set. The parameter n estimators denotes the number
of boosted trees to fit and num leaves is the maximum tree
leaves for base learners. Basically, we set n estimators to
300 and 65 for the finish and like models, respectively,
and num leaves is set to 2048 and 4096. We leave the rest
of parameters to default settings.

For the training procedure, even though the data is or-
dered chronologically, we find that shuffling training set be-
fore training could make the predictions more robust and the
operation can be further treated as one kind of feature engi-

698



Table 2: Features descriptions

Code for features Description Dimension
a categorical data 5,212,602
b video duration + create time 2
c conditional probability/expection features 5
d concatenation of user and item latent feature from SVD 2×50
e concatenation of user and item latent feature from LightFM 2×10
f concatenation of user and author latent feature from SVD 2×10
g concatenation of user and music latent feature from SVD 2×10
h dot product feature 4
i 128-dimensional video features 128
j 128-dimensional audio features 128
k title features 16

Table 3: Experimental results. (f) and (l) denote the predictions on finish and like, respectively.

Model Feature Private score Public score (finish/like)
LightGBM(f) + NN(l) a ,b ,c ,d ,e 0.7927 0.7918 (0.7331/0.9287)
LightGBM(f) + NN(l) a ,b ,c ,d ,e ,i 0.7955 0.7945 (0.7364/0.9302)

4 LightGBMs(f) + 4 NNs(l) a ,b ,c ,d ,e ,i 0.7955 0.7959 (0.7375/0.9321)
7 ensembles(f) + 5 ensembles(l) a ,b ,c ,d ,e ,i 0.7987 0.7979 (0.7400/0.9328)

11 ensembles(f) + 7 ensembles(l) a ,b ,c ,d ,e ,i ,g ,j 0.8008 0.7999 (0.7428/0.9332)
12 ensembles(f) + 8 ensembles(l) a ,b ,c ,d ,e ,f ,g ,i ,j 0.8014 0.8005 (0.7436/0.9334)
17 ensembles(f) + 12 ensembles(l) a ,b ,c ,d ,e ,f ,g ,i ,j ,k 0.8029 0.8020 (0.7455/0.9338)
24 ensembles(f) + 21 ensembles(l) a ,b ,c ,d ,e ,f ,g, h, i, j, k 0.8038 0.8029 (0.7463/0.9348)

neering. With regard to the time consumption on training, it
takes about 5 hours for NN models per epochs and 6 to 8 hours
for LightGBM models. The machine we use is a GPU server
with Xeon(R) E5-2667 v4, NVIDIA GeForce GTX 1080ti
and 500 gigabytes of memory.

4.2. Evaluation results

In this subsection, we show our result on Leaderboard using
different subset of features and various model settings in Ta-
ble 3. The feature names are redefined in shorthand codes and
illustrate in Table 2.

Based on our experiments on validation set, LightGBM
provides better performance on predicting finish. On the
contrary, the NN based model excels at predicting like. In
Table 3, we demonstrate the evolution of our prediction re-
sults. The ensembles are a blend of LightGBMs and NNs
with various training settings (e.g., more epochs and shuffling
of data) by equally averaging the prediction probabilities. It
is worth mentioning that more LightGBMs are used in en-
sembles(f) and more NNs are used in ensembles(l) follow-
ing the same trend we’ve discovered. Moreover, we find that
LightGBM and NN model are complementary since the pre-
diction probabilities of them are quite uncorrelated. For ex-
ample, the correlation coefficient of the predictions between

a LightGBM and NN model using all features mentioned in
Table 2 is 0.898 and 0.702 for finish and like, respec-
tively. These are relatively low values since the AUC is ap-
proximate to 0.74 and 0.93 for the two sub-tasks, respectively.
Besides, the reported feature importance by LightGBM indi-
cates that the top significant features are user latent feature
from LightFM, SVD, and video duration.

Our best submission achieves 0.8029 on the Public
Leaderboard, and 0.8037 on the Private Leaderboard, which
finished the 3rd place in the competition.

5. CONCLUSION

In this paper, we detail our solution to the ICME2019 Short
Video Understanding Challenge. We incorporate deep neu-
ral networks, which is equipped with Compressed Interaction
Network, and Gradient Boosting Decision Tree for ensem-
bles. The NN-based model is trained in a multi-task learning
fashion, and we find that the two approaches surpass each
other on the two sub-tasks. Feature engineerings, such as
SVD and LightFM, are applied for performance boosting.
With the aid of aforementioned techniques, we are able to
achieve an AUC score of 0.8038 in the end and ranked the
third in track2.

Due to memory constraints, we could not fit the Light-
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GBM for track1 using the features we proposed. Note that
it takes about 400 gigabytes of RAM to store the training
matrix for track2. Therefore, in the future, a more efficient
implementation to deal with the data structure and training
procedure will be a vital issue.
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